STYLE-BASED DRUM SYNTHESIS WITH GAN INVERSION
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INTRODUCTION GAN ARCHITECTURE

Generation and transformation of drum sounds using style-based generative adversarial network Architecture is based on [1], and is extended
Functional control over synthesis, based on principal component analysis applied to intermediate latent space with conditional style-based generator network [2].
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- G feature controls are achieved by layer-wise
perturbation along principal directions = Sampling from intermediate latent space and exploring timbral

- Coordinations are scaled with control parameter characteristics with preset number of controls

that can be modified by user = User can input single drum sample to encoder network and
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» Encoder can be used to reconstruct 2 arbitrary drum sounds,
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High-frequency content of generated drum sounds can be

shaped by introducing Gaussian noise into individual layers of

pre-trained G.

- Open-source code

« Audio examples
Interpolation in latent space for drum generation. Drums

are generated for each point along linear paths through
latent space (left). Gennerations appear across rows

(right).

» Python demo
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